他心里忍不住吐槽:阳宝,这可真不能怪我,你这手气是真有点臭。
但比赛就是比赛。
故阳的嗓音清亮,共情能力又极强,驾驭这种悲伤情歌,反而会形成一种强烈的反差感,更能直击人心最柔软的地方。
思及此,凌落不再犹豫。
他在搜索栏里,写下了一个词。
【定制歌曲:于文文,《体面》】
这首歌的流传度极广,几乎是为这个主题而生。
“分手应该体面,谁都不要说抱歉,何来亏欠,我敢给就敢心碎。”
洒脱、决绝,又带着无法言说的伤痛和自我安慰。
让故阳来唱,再合适不过。
凌落确认了选择。
光幕再次闪烁,新的题目浮现。
这一次,不再是物理题。
【请证明当n > 2时,不定方程 x?+ y?= z?没有正整数解。】
费马大定理。
饶是凌落,看到这行字时,呼吸也停滞了一瞬。
整个记忆宫殿仿佛都安静了下来。
他盯着那行字,有那么一瞬间,怀疑是系统出了BUG。
为了定制一首流行歌曲,让他证明这道困扰了人类三百多年的数学难题?
开什么国际玩笑。
完整的证明过程,长达一百多页,涉及了大量高深的椭圆曲线和模形式理论,这要他怎么手写?
凌落沉默了片刻,随即冷静下来。
不对。
记忆宫殿的规则,是“解答”,而不是“原创”。
只要他自己的知识库里有这个答案,他就能写出来。而这座宫殿,本身就是他所有知识和记忆的集合体。
安德鲁·怀尔斯的证明过程,他曾经完整地研读过。
虽然复杂到令人发指,但并非无法复现。
凌落深吸一口气,眼神变得专注而锐利。
他伸出手,手指悬停在面板上方。
大脑以前所未有的速度运转起来,无数的公式、理论、逻辑链条在脑海中交织、重组、排列。
下一秒,他的手指动了。
一行行复杂的数学符号,如同有了生命一般,在光幕上飞速流淌。
从谷山-志村猜想的特例间接推导出该不定方程无正整数解——因为若方程存在正整数解,会对应一个不满足该猜想的“椭圆曲线”,从而产生矛盾,反证方程无解。